Stopping on Red

This game has a dealer D and a player P. The dealer shuffles a standard deck of 52 cards. D begins to flip the cards over one at a time. At any point P can say “stop”, at which point the NEXT card the dealer turns over is P’s chosen card. P’s goal is to get a red card. (If P never says “stop”, his card is the last one.)

Is it possible for P to get a red card with probability better than .5? If so, what is his strategy? If not, prove it.

An interesting iteration

Let u and v be integer valued variables. v is fixed and u starts at 0. Analyze what happens when the following assignment (in C notation) is iterated:

$$u = (u-v) \& v$$

Describe the behavior in simple terms as a function of v.

Dice and Coins (hard)

We say that a n-die can be simulated with k coins if the following holds:

Given an integer n, there is a vector of k probabilities (p_1, p_2, \ldots, p_k). and a finite procedure that flips these coins and from their outcomes produces one of n equally probable results.

The question is: for what values of n and k can an n-die be simulated by k coins? Does allowing irrational valued probabilities in the coins help? This problem is fairly open-ended. Start out by trying to solve it for small values of n.