Combinatorial Games

Game 1 Start with \(n \) chips. Players A,B alternately take 1,2,3,4 chips until there are none left. The winner is the person who takes the last chip.

Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 10)</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(n = 11)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

B wins

B wins

What is the optimal strategy for this game?

Game 2 Chip placed at point \((m,n)\). Players can move chip to \((m',n)\) or \((m,n')\) where \(0 \leq m' < m\) and \(0 \leq n' < n\). The player who makes the last move and puts the chip onto \((0,0)\) wins.

What is the optimal strategy for this game?

Game 3 \(W \) is a set of words. A and B alternately remove words \(w_1,w_2,\ldots \) from \(W \). The rule is that the first letter of \(w_{i+1} \) must be the same as the last letter of \(w_i \). The player who makes the last legal move wins.

1 Abstraction

Represent each position by a vertex of a digraph \(D = (X,A) \). \((x,y)\) is an arc of \(D \) iff one can move from position \(x \) to position \(y \).

We assume that the digraph is finite and that it is **acyclic** i.e. there are no directed cycles.

The game starts with a chip on vertex \(x_0 \) say, and players alternately move the chip to \(x_1,x_2,\ldots \), where \(x_{i+1} \in \Gamma^+(x_i) \), the set of out-neighbours of \(x_i \). The game ends when the chip is on a **sink** i.e. a vertex of out-degree zero. The last player to move is the winner.

Example 1: \(D = (\{0,1,\ldots ,n\},A) \) where \((x,y) \in A \) iff \(x - y \in \{1,2,3,4\} \).

Example 2: \(D = (\{0,1,\ldots ,m\} \times \{0,1,\ldots ,n\},A) \) where \((x,y) \in \Gamma^+((x',y')) \) iff \(x = x' \) and \(y > y' \) or \(x > x' \) and \(y = y' \).

Example 3: \(D = (\{W,w\} : W' \subseteq W \setminus \{w\},A) \). \(w \) is the last word used and \(W' \) is the remaining set of unused words. \((A',w') \in \Gamma^+((A,w)) \) iff \(w' \in A \) and \(w' \) begins with the last letter of \(w \). Also, there is an arc from \((W,\cdot)\) to \((W \setminus \{w\},w)\) for all \(w \), corresponding to the games start.

We will first argue that such a game must eventually end. A **topological numbering** of digraph \(D \) is a map \(f : X \rightarrow [N], N = |X| \) which satisfies \((x,y) \in A\) implies \(f(x) < f(y) \).

Theorem 1. A finite digraph \(D = (X,A) \) is acyclic iff it admits at least one topological numbering.

Proof Suppose first that \(D \) has a topological numbering. We show that it is acyclic. Suppose that \(C = (x_1,x_2,\ldots ,x_k,x_1) \) is a directed cycle. Then \(f(x_1) < f(x_2) < \cdots < f(x_k) < f(x_1) \), contradiction.

Suppose now that \(D \) is acyclic. We first argue that \(D \) has at least one sink. Thus let \(P = (x_1,x_2,\ldots ,x_k) \) be a directed simple path in \(D \). We claim that \(x_k \) is a sink. If \(D \) contains an arc \((x_k,y)\) then either \(y = x_i, 1 \leq i \leq k-1 \) and this means that \(D \) contains the cycle \(x_i,x_{i+1},\ldots ,x_k,x_i \), contradiction or \(y \notin \{x_1,x_2,\ldots ,x_k\} \) and then \((P,y)\) is a longer simple path than \(P \), contradiction.
We can now prove by induction on N that there is at least one topological numbering. If $N = 1$ and $X = \{x\}$ then $f(x) = 1$ defines a topological numbering.

Now assume that $N > 1$. Let z be a sink of D and define $f(z) = N$. The digraph $D' = D - z$ is acyclic and by the induction hypothesis it admits a topological numbering, $f : X \setminus \{z\} \to [N - 1]$. The function we have defined on X is a topological numbering. If $(x, y) \in A$ then either $x, y \neq z$ and then $f(x) < f(y)$ by our assumption on f, or $y = z$ and then $f(x) < N = f(z)$ ($x \neq z$ because z is a sink).

The fact that D has a topological numbering implies that the game must end. Each move increases the f value of the current position by at least one and so after at most N moves a sink must be reached.

The positions of a game are partitioned into 2 sets:

- **P-positions**: The next player cannot win. The previous player can win regardless of the current player’s strategy.
- **N-positions**: The next player has a strategy for winning the game.

The main problem is to determine N and P and what the strategy is for winning from an N-position.

For $x \in X$ let $\Gamma^+(x) = \{y \in X : (x, y) \in A\}$ be the set of out-neighbours of x.

Labelling procedure

1. Label all sinks with P.
2. Label with N, every position x for which there exists $y \in \Gamma^+(x)$ which is labelled with P.
3. Label with P, every position x for which $\Gamma^+(x)$ is labelled with N.

A position x is an N-position (winning) iff there is a move from x to a losing position for the next player.

The labelling should be carried out in reverse topological order.

Thus there is a unique partition of X into N, P which satisfies the following:

P1 All sinks are in P.

P2 If $x \in N$ then $\Gamma^+(x) \cap P \neq \emptyset$.

P3 If $x \in P$ then $\Gamma^+(x) \subseteq N$.

In Game 1, $P = \{5k : k \geq 0\}$ and in Game 2, $P = \{(x, x) : x \geq 0\}$.

Sprague-Grundy Numbering

For $S \subseteq \{0, 1, 2, \ldots\}$ let

$$\text{mex}(S) = \min \{x \geq 0 : x \notin S\}.$$

Now given an acyclic digraph $D = X, A$ define g recursively by

$$g(x) = \begin{cases} 0 & \text{if } x \text{ is a sink} \\ \text{mex}(\Gamma^+(x)) & \text{otherwise} \end{cases}$$

$g(x)$ can be computed in reverse topological order.
Lemma 1.

\[x \in P \iff g(x) = 0. \]

Proof. Clearly P1 holds. We check P2 and P3.

P2: If \(g(x) > 0 \) there must be a \(y \in \Gamma^+(x) \) with \(g(y) = 0 \).

P3: If \(g(x) = 0 \) there cannot be a \(y \in \Gamma^+(x) \) with \(g(y) = 0 \).

Sums of games

Suppose that we have \(n \) games with digraphs \(D_i = (X_i, A_i) \), \(i = 1, 2, \ldots, n \). The sum of these games is played as follows. A position is a vector \((x_1, x_2, \ldots, x_n) \in A_1 \times A_2 \times \cdots \times A_n \). To make a move, a player chooses \(i \) such that \(x_i \) is not a sink of \(D_i \) and then replaces \(x_i \) by \(y \in \Gamma_i^+(x_i) \). The game ends when each \(x_i \) is a sink of \(D_i \) for \(i = 1, 2, \ldots, n \).

Example Nim

In a one pile game, we start with \(a \geq 0 \) chips and while there is a positive number \(x \) of chips, a move consists of deleting \(y \leq x \) chips. In this game the N-positions are positive integers and the unique P-position is 0. The Sprague-Grundy numbering is defined by \(g(x) = x \).

In general, Nim consists of the sum of \(n \) single pile games starting with \(a_1, a_2, \ldots, a_n > 0 \). A move consists of deleting some chips from a non-empty pile.

We now show how to compute the Sprague-Grundy numbering for a sum of games.

For binary integers \(a = a_m a_{m-1} \cdots a_1 a_0 \) and \(b = b_m b_{m-1} \cdots b_1 b_0 \) we define \(a \oplus b = c_m c_{m-1} \cdots c_1 c_0 \) by \(c_i = 1 \) if \(a_i \neq b_i \) and \(c_i = 0 \) if \(a_i = b_i \) for \(i = 1, 2, \ldots, m \).

So for example \(11 \oplus 5 = 14 \).

Theorem 2. If \(g_i \) is the Sprague-Grundy function for game \(i = 1, 2, \ldots, n \) then the Sprague-Grundy function \(g \) for the sum of the games is defined by

\[g(x) = g_1(x_1) \oplus g_2(x_2) \oplus \cdots \oplus g_n(x_n) \]

where \(x = (x_1, x_2, \ldots, x_n) \).

Proof. It is enough to show

1. If \(x \in X \) is a sink of \(D \) then \(g(x) = 0 \).

2. If \(x \in X \) and \(g(x) = b > a \geq 0 \) then there exists \(x' \in \Gamma^+(x) \) such that \(g(x') = a \).

3. If \(x \in X \) and \(g(x) = b \) and \(x' \in \Gamma^+(x) \) then \(g(x') \neq g(x) \).

1. If \(x = (x_1, x_2, \ldots, x_n) \) is a sink then \(x_i \) is a sink of \(D_i \) for \(i = 1, 2, \ldots, n \). So

\[g(x) = g_1(x_1) \oplus g_2(x_2) \oplus \cdots \oplus g_n(x_n) \]

\[= 0 \oplus 0 \oplus \cdots \oplus 0 \]

\[= 0. \]

2. Write \(d = a \oplus b \). Then

\[a = d \oplus b \]

\[= d \oplus g_1(x_1) \oplus g_2(x_2) \oplus \cdots \oplus g_n(x_n). \]

(1)
Now suppose that we can show there exists i such that $d \oplus g_i(x_i) < g_i(x_i)$. Then since $g_i(x_i) = \text{mex}(\Gamma_i^+(x_i))$ there must exist $x_i' \in \Gamma_i^+(x_i)$ such that $g_i(x_i') = d \oplus g_i(x_i)$. Assume without loss of generality that $i = 1$. Then from (1) we have

$$a = g_1(x_1') \oplus g_2(x_2) \oplus \cdots \oplus g_n(x_n) = g(x_1', x_2, \ldots, x_n).$$

Furthermore, $(x_1', x_2, \ldots, x_n) \in \Gamma^+(x)$ and so we will have verified 2.

Let us prove that such an i exists. Suppose that $2^{k-1} \leq d < 2^k$. Then d has a 1 in position k and no higher. Since $d_k = a_k \oplus b_k$ and $a < b$ we must have $a_k = 0$ and $b_k = 1$. Thus there is at least one i such that $g_i(x_i)$ has a 1 in position k. But then $d \oplus g_i(x_i) < g_i(x_i)$ since d “destroys” the kth bit of $g_i(x_i)$ and does not change any higher bit.

3. Suppose without loss of generality that $g(x_1', x_2, \ldots, x_n) = g(x_1, x_2, \ldots, x_n)$ where $x_1' \in \Gamma^+(x_1)$. Then $g_1(x_1') \oplus g_2(x_2) \oplus \cdots \oplus g_n(x_n) = g_1(x_1) \oplus g_2(x_2) \oplus \cdots \oplus g_n(x_n)$ implies that $g_1(x_1') = g_1(x_1)$, contradiction.

If we apply this theorem to the game of Nim then if the position x consists of piles of x_i chips for $i = 1, 2, \ldots, n$ then $g(x) = x_1 \oplus x_2 \oplus \cdots \oplus x_n$.

Sums of other subtraction games:

In our first example, $g(x) = x \mod 5$ and so for the sum of n such games we have

$$g(x_1, x_2, \ldots, x_n) = (x_1 \mod 5) \oplus (x_2 \mod 5) \oplus \cdots \oplus (x_n \mod 5).$$

Another subtraction game.

One pile:

- A player can remove any even number of chips, but not the whole pile.
- A player can remove the whole pile if it is odd.

The terminal positions are 0 or 2.

Lemma 2. $g(0) = 0$, $g(2k) = k-1$ and $g(2k-1) = k$ for $k \geq 1$.

Proof 0, 2 are terminal positions and so $g(0) = g(2) = 0$. $g(1) = 1$ because the only position one can move to from 1 is 0. We prove remainder by induction on k.

Assume that $k > 1$.

$$g(2k) = \text{mex}\{g(2k-2), g(2k-4), \ldots, g(2)\} = \text{mex}\{k-2, k-3, \ldots, 0\} = k-1.$$

$$g(2k-1) = \text{mex}\{g(2k-3), g(2k-5), \ldots, g(1), g(0)\} = \text{mex}\{k-1, k-2, \ldots, 0\} = k.$$

A more complicated one pile game

Start with n chips. First player can remove up to $n-1$ chips.

In general, if the previous player took x chips, then the next player can take $y \leq x$ chips.

Thus a game’s position can be represented by (n, x) where n is the current size of the pile and x is the maximum number of chips that can be removed in this round.
Theorem 3. Suppose that the position is \((n, x)\) where \(n = m2^k\) and \(m\) is odd. Then,

(a) This is an \(N\)-position if \(x \geq 2^k\).

(b) This is a \(P\)-position if \(m = 1\) and \(x < n\).

Proof For a non-negative integer \(n = m2^k\), let \(\langle n \rangle\) denote the number of bits in the binary expansion of \(n\) and let \(k = \rho(n)\) determine the position of the right-most one in this expansion. We claim that the following strategy is a win for the player in a position described in (a): Remove \(y = 2^k\) chips. Suppose this player is \(A\).

If \(m = 1\) then \(x \geq n\) and \(A\) wins. Otherwise, after such a move the position is \((n', y)\) where \(\rho(n') > \rho(n)\). Note first that \(\langle n' \rangle = \langle n \rangle - 1 > 0\). Thus \(B\) cannot win at this point. Second, \(B\) cannot remove more than \(2^k\) chips and so if \(B\) moves the position to \((n'', x'')\) then \(\langle n'' \rangle \geq \langle n' \rangle\) and furthermore, \(x'' \geq 2^{\rho(n'')}\), since \(x''\) must have a \(1\) in position \(\rho(n'')\). Thus, by induction, \(A\) is in an \(N\)-position and wins the game.

To prove (b), note that after the first move, the position satisfies the conditions of (a). \(\square\)

Let us next consider a generalisation of this game. There are 2 players \(A\) and \(B\) and \(A\) goes first. We have a non-decreasing function \(f\) from \(\mathbb{N} \to \mathbb{N}\) where \(\mathbb{N} = \{1, 2, \ldots\}\) which satisfies \(f(x) \geq x\).

At the first move \(A\) takes any number less than \(h\) from the pile, where \(h\) is the size of the initial pile. Then on a subsequent move, if a player takes \(x\) chips then the next player is constrained to take at most \(f(x)\) chips. Thus the above considered the cases \(f(x) = x\).

There is a set \(\mathcal{H} = \{H_1 = 1 < H_2 < \ldots\}\) of initial pile sizes for which the first player will lose, assuming that the second player plays optimally. Also, if the initial pile size \(h \notin \mathcal{H}\) then the first player has a winning strategy. It will turn out that the sequence satisfies the recurrence:

$$H_{j+1} = H_j + H_\ell \text{ where } H_\ell = \min_{i \leq j} \{H_i \mid f(H_i) \geq H_j\}, \quad \text{for } j \geq 0. \quad (2)$$

Note that

$$H_{j+1} \leq 2H_j. \quad (3)$$

[The reader should check that if \(f(x) = x\) then \(H_1 = 2^x\). Another case to check is \(f(x) = 2x\). This gives \(\mathcal{H} = \{1, 2, 3, 5, 8, \ldots\}\) i.e. the Fibonacci sequence.]

The key to the game is the following result.

Theorem 4. Every positive integer \(n\) can be uniquely written as the sum

$$n = H_{j_1} + H_{j_2} + \cdots + H_{j_p} \tag{4}$$

where \(f(H_{j_i}) < H_{j_{i+1}}, \text{ for } 1 \leq i < p\).

Proof We prove this by induction on \(n\). If \(n = 1\) then \(n = H_1\) is the unique decomposition.

Existence
Assume that any \(n < H_k\) can be represented as a sum of distinct \(H_{j_i}\)'s with \(f(H_{j_i}) < H_{j_{i+1}}\), and suppose that \(H_k \leq n < H_{k+1}\). Inequality (3) implies that \(n - H_k < H_k\).

It follows by induction that

$$n - H_k = H_{j_1} + \cdots + H_{j_p}, \quad (5)$$
where $f(H_{j_i}) < H_{j_i+1}$ for $i = 1, 2, ..., p - 1$. To establish existence we need only show that $f(H_{j_p}) < H_k$. Assume to the contrary that $f(H_{j_p}) \geq H_k$. But then for some $m \leq j_p$ we have

$$H_{k+1} = H_k + H_m \leq H_k + H_{j_p} \leq n,$$

contradicting the choice of n.

Uniqueness

We will first prove by induction on p that if $f(H_{j_i}) < H_{j_i+1}$ for $1 \leq i < p$ then

$$H_{j_1} + H_{j_2} + \cdots + H_{j_p} < H_{j_p+1}. \quad (6)$$

If $p = 2$ then we are saying that if $f(H_{j_1}) < H_{j_2}$ then $H_{j_1} + H_{j_2} < H_{j_2+1}$. But this follows directly from $H_{j_2+1} = H_{j_2} + H_m$ where $f(H_m) \geq H_{j_2}$ i.e. $H_m > H_{j_1}$.

So assume that (6) is true for $p \geq 2$. Now

$$H_{j_{p+1}+1} = H_{j_{p+1}} + H_m \text{ and } f(H_{j_p}) < H_{j_{p+1}};$$

implies that $m \geq j_p + 1$.

Thus

$$H_{j_p+1} \geq H_{j_{p+1}} + H_{j_{p+1}} > H_{j_{p+1}} + H_{j_p} + H_{j_{p-1}} + \cdots + H_{j_1},$$

after applying induction to get the second inequality.

This completes the induction for (6).

Now assume by induction on k that $n < H_k$ has a unique decomposition (4). This is true for $k = 2$ and so now assume that $k \geq 2$ and $H_k \leq n < H_{k+1}$. Consider a decomposition

$$n = H_{j_1} + H_{j_2} + \cdots + H_{j_p}.$$

It follows from (6) that $j_p = k$. Indeed, $j_p \leq k$ since $n < H_{k+1}$ and if $j_p < k$ then $H_{j_1} + H_{j_2} + \cdots + H_{j_p} < H_{j_p+1} \leq H_k$, contradicting our choice of n. So H_k appears in every decomposition of n.

Now (3) and $n < H_{k+1}$ implies $n - H_k < H_k$ and so, by induction, $n - H_k$ has a unique decomposition. But then if n had two distinct decompositions, H_k would appear in each, implying that $n - H_k$ also had two distinct decompositions, contradiction. \qed

One simple consequence of the uniqueness of the decomposition is that

$$H_k \neq H_{j_1} + H_{j_2} + \cdots + H_{j_p} \quad (7)$$

for all k and sequences $j_1, j_2, ..., j_p$ where $f(H_{j_i}) < H_{j_i+1}$ for $i = 1, 2, ..., p - 1$.

It follows from the above Lemma that the integers n can be given unique “binary” representations by representing $n = H_{j_1} + H_{j_2} + \cdots + H_{j_p}$ by the 0-1 string with a 1 in positions $j_1, j_2, ..., j_p$ and 0 everywhere else. We call this the H-representation of n. This then leads to the following

Theorem 5. Suppose that the position is $(n, *)$. Then,

(a) This is an N-position if $n \notin \mathcal{H} = \{H_1, H_2, \ldots, \}$.

(b) This is a P-position if $n \in \mathcal{H}$.

6
Proof

(a) The winning strategy is to delete a number of chips equal to H_{j_i} where j_i is the index of the rightmost 1 in the H-representation of n.

All we have to do is verify that this strategy is possible. Note that if A deletes H_{j_i} chips, then B cannot respond by deleting H_{j_2} chips, because $H_{j_2} > f(H_{j_i})$ and so it is only A that can reduce the number of 1’s in the H-representation of n.

The thing to check is that if A starts in (n, \ast) then A can always delete H_{j_i} chips i.e. the positions (m, x) that A will face satisfy $f(x) \geq H_{j_i}$ where $m = H_{j_1} + H_{j_2} + \cdots + H_{j_n}$. We do this by induction on the number of plays in the game so far. It is true in the first move and suppose it is true for (m, x) and A removes H_{j_i} and B removes y where $y \leq \min \{m - H_{j_i}, f(H_{j_i})\} < H_{j_2}$. Now

$$m - H_{j_i} - y = H_{j_2} - y + H_{j_3} \cdots + H_{j_n}$$

$$= H_{j_1} + H_{j_2} \cdots + H_{j_n} + H_{j_i} + H_{j_2} \cdots + H_{j_n}$$

and we need to argue that $H_{j_i} \leq f(y)$. But if $f(y) < H_{j_i}$, then we have

$$H_{j_2} = y + H_{j_1} + H_{j_2} \cdots + H_{j_n}$$

$$= H_{j_1} + \cdots + H_{j_n} + H_{j_2} + \cdots + H_{j_n}$$

where $f(H_{j_i}) \leq f(y) < H_{j_i}$, contradicting (7). Thus A can remove H_{j_i} in the next round, as required.

(b) Assume that $n = H_k$. After A removes x chips we have

$$H_k - x = H_{j_1} + H_{j_2} + \cdots + H_{j_n}$$

chips left.

All we have to show is that B can now remove H_{j_i} chips i.e. $H_{j_i} \leq f(x)$. But if this is not the case then we argue as above that $H_k = H_{a_1} + \cdots + H_{a_n}$, where $x = H_{a_1} + \cdots + H_{a_n}$ and $f(H_{j_i}) \leq f(x) < H_{j_i}$, contradicting (7). \hfill \Box

Geography

Start with a chip sitting on a vertex v of a graph or digraph G.

A move consists of moving the chip to a neighbouring vertex. In edge geography, moving the chip from x to y deletes the edge (x, y). In vertex geography, moving the chip from x to y deletes the vertex x.

The problem is given a position (G, v), to determine whether this is a P or N position.

Complexity Both edge and vertex geography are Pspace-hard on digraphs. Edge geography is Pspace-hard on an undirected graph. Only vertex geography on a graph is polynomial time solvable.

2 Undirected Vertex Geography – UVG

Theorem 6. (G, v) is an N-position in UVG iff every maximum matching of G covers v.

Proof (i) Suppose that M is a maximum matching of G which covers v. Player 1’s strategy is now: Move along M-edge that contains current vertex.
If Player 1 were to lose, then there would exist a sequence of edges $e_1, f_1, \ldots, e_k, f_k$ such that $v \in e_1, e_1, e_2, \ldots, e_k \in M$, $f_1, f_2, \ldots, f_k \notin M$ and $f_k = (x, y)$ where y is the current vertex for Player 1 and y is not covered by M. But then if $A = \{e_1, e_2, \ldots, e_k\}$ and $B = \{f_1, f_2, \ldots, f_k\}$ then $(M \setminus A) \cup B$ is a maximum matching (same size as M) which does not cover v, contradiction.

(ii) Suppose now that there is some maximum matching M which does not cover v. Then if (v, w) is Player 1’s move, w must be covered by M, else M is not a maximum matching. Player 2’s strategy is now: Move along M-edge that contains current vertex. If Player 2 were to lose then there exists $e_1 = (v, w), e_1, \ldots, e_k, e_k, e_{k+1} = (x, y)$ where y is the current vertex for Player 2 and y is not covered by M. But then we have defined an augmenting path from v to y and so M is not a maximum matching, contradiction.

Note that we can determine whether or not v is covered by all maximum matchings as follows: Find the size σ of the maximum matching G. This can be done in $O(n^2)$ time on an n-vertex graph. Then find the size σ' of a maximum matching in $G - v$. Then v is covered by all maximum matchings of G if $\sigma \neq \sigma'$.

3 Undirected Edge Geography – UEG on a bipartite graph

An even kernel of G is a non-empty set $S \subseteq V$ such that (i) S is an independent set and (ii) $v \notin S$ implies that $deg_S(v)$ is even, (possibly zero). $deg_S(v)$ is the number of neighbours of v in S.

Lemma 3. If S is an even kernel and $v \in S$ then (G, v) is a P-position in UEG.

Proof Any move at a vertex in S takes the chip outside S and then Player 2 can immediately put the chip back in S. After a move from $x \in S$ to $y \notin S$, $deg_S(y)$ will become odd and so there is an edge back to S. making this move, makes $deg_S(y)$ even again. Eventually, there will be no $S : S$ edges and Player 1 will be stuck in S.

We now discuss Bipartite UEG i.e. we assume that G is bipartite, G has bipartition consisting of a copy of $[m]$ and a disjoint copy of $[n]$ and edges set E. Now consider the $m \times n$ 0-1 matrix A with $A(i, j) = 1$ iff $(i, j) \in E$.

We can play our game on this matrix: We are either positioned at row i or we are positioned at column j. If we are positioned at row i, then we choose a j such that $A(i, j) = 1$ and (i) make $A(i, j) = 0$ and (ii) move the position to column j. An analogous move is taken when we positioned at column j.

Lemma 4. Suppose the current position is row i. This is a P-position iff row i is in the span of the remaining rows (is the sum (mod 2) of a subset of the other rows) or row i is a zero row. A similar statement can be made if the position is column j.

Proof If row i is a zero row then vertex i is isolated and this is clearly a P-position. Otherwise, assume the position is row 1 and there exists $I \subseteq [m]$ such that $1 \in I$ and

$$r_1 = \sum_{i \in I \setminus \{1\}} r_i \pmod{2} \quad \text{or} \quad \sum_{i \in I} r_i = 0 \pmod{2} \quad (8)$$

where r_i denotes row i.

I is an even kernel: If $x \notin I$ then either (i) x corresponds to a row and there are no x, I edges or (ii) x corresponds to a column and then $\sum_{i \in I} A(i, x) = 0 \pmod{2}$ from (8) and then x has an even number of neighbours in I.

8
Now suppose that (8) does not hold for any \(I \). We show that there exists a \(\ell \) such that \(A(1,\ell) = 1 \) and putting \(A(1,\ell) = 0 \) makes column \(\ell \) dependent on the remaining columns. Then we will be in a P-position, by the first part.

Let \(e_1 \) be the \(n \)-vector with a 1 in row 1 and a 0 everywhere else. Let \(A^* \) be obtained by adding \(e_1 \) to \(A \) as an \((n+1)\)th column. Now the row-rank of \(A^* \) is the same as the row-rank of \(A \) (here we are doing all arithmetic modulo 2). Suppose not, then if \(r_i \) is the \(i \)th row of \(A^* \) then there exists a set \(J \) such that

\[
\sum_{i \in J} r_i \equiv 0 (\text{mod } 2) \neq \sum_{i \in J} r_i^* (\text{mod } 2).
\]

Now \(1 \notin J \) because \(r_1 \) is independent of the remaining rows of \(A \), but then \(\sum_{i \in J} r_i = 0 (\text{mod } 2) \) implies \(\sum_{i \in J} r_i^* = 0 (\text{mod } 2) \) since the last column has all zeros, except in row 1.

Thus rank \(A^* \) = rank \(A \) and so there exists \(K \subseteq [n] \) such that

\[
e_1 = \sum_{k \in K} c_k (\text{mod } 2) \quad \text{or} \quad e_1 + \sum_{k \in K} c_k = 0 (\text{mod } 2) \quad (9)
\]

where \(c_k \) denotes column \(k \) of \(A \). Thus there exists \(\ell \in K \) such that \(A(1,\ell) = 1 \). Now let \(c_j^* = c_j \) for \(j \neq \ell \) and \(c_\ell^* \) be obtained from \(c_\ell \) by putting \(A(1,\ell) = 0 \) i.e. \(c_\ell^* = c_\ell + e_1 \). But then (9) implies that \(\sum_{k \in K} c_k^* = 0 (\text{mod } 2) \) (\(K = \{k\} \) is a possibility here).

\[\square\]

Tic Tac Toe and extensions

We consider the following multi-dimensional version of Tic Tac Toe (Noughts and Crosses to the English). The board consists of \([n]^d \). A point on the board is therefore a vector \((x_1, x_2, \ldots, x_d)\) where \(1 \leq x_i \leq n \) for \(1 \leq i \leq d \).

A line is a set points \((x^{(1)}_j, x^{(2)}_j, \ldots, x^{(d)}_j)\), \(j = 1, 2, \ldots, n \) where each sequence \(x^{(i)} \) is either (i) of the form \(k, k, \ldots, k \) for some \(k \in [n] \) or is (ii) \(1, 2, \ldots, n \) or is (iii) \(n, n - 1, \ldots, 1 \). Finally, we cannot have Case (i) for all \(i \).

Thus in the (familiar) \(3 \times 3 \) case, the top row is defined by \(x^{(1)} = 1, 1, 1 \) and \(x^{(2)} = 1, 2, 3 \) and the diagonal from the bottom left to the top right is defined by \(x^{(1)} = 3, 2, 1 \) and \(x^{(2)} = 1, 2, 3 \)

Lemma 5. The number of winning lines in the \((n, d)\) game is \(\frac{(n+2)^d - n^d}{2} \).

Proof In the definition of a line there are \(n \) choices for \(k \) in (i) and then (ii), (iii) make it up to \(n + 2 \). There are \(d \) independent choices for each \(i \) making \((n + 2)^d\). Now delete \(n^d \) choices where only Case (i) is used. Then divide by 2 because replacing (ii) by (iii) and vice-versa whenever Case (i) does not hold produces the same set of points (traversing the line in the other direction).

The game is played by 2 players. The Red player (X player) goes first and colours a point red. Then the Blue player (0 player) colours a different point blue and so on. A player wins if there is a line, all of whose points are that players colour. If neither player wins then the game is a draw. The second player does not have a winning strategy:

Lemma 6. Player 1 can always get at least a draw.

Proof We prove this by considering strategy stealing. Suppose that Player 2 did have a winning strategy. Then Player 1 can make an arbitrary first move \(x_1 \). Player 2 will then move with \(y_1 \). Player 1 will now win playing the winning strategy for Player 2 against a first move of \(y_1 \). This can be carried out until the strategy calls for move \(x_1 \) (if at all). But then Player 1 can make an arbitrary move and continue, since \(x_1 \) has already been made.

\[\square\]
3.1 Pairing Strategy

\[
\begin{bmatrix}
11 & 1 & 8 & 1 & 12 \\
6 & 2 & 2 & 9 & 10 \\
3 & 7 & * & 9 & 3 \\
6 & 7 & 4 & 4 & 10 \\
12 & 5 & 8 & 5 & 11
\end{bmatrix}
\]

The above array gives a strategy for Player 2 the 5 × 5 game \((d = 2, n = 5)\). For each of the 12 lines there is an associated pair of positions. If Player 1 chooses a position with a number \(i\), then Player 2 responds by choosing the other cell with the number \(i\). This ensures that Player 1 cannot take line \(i\). If Player 1 chooses the * then Player 2 can choose any cell with an unused number. So, later in the game if Player 1 chooses a cell with \(j\) and Player 2 already has the other \(j\), then Player 1 can choose an arbitrary cell. Player 2's strategy is to ensure that after all cells have been chosen, he/she will have chosen one of the numbered cells associated with each line. This prevents Player 1 from taking a whole line. This is called a pairing strategy.

We now generalise the game to the following: We have a family \(\mathcal{F} = A_1, A_2, \ldots, A_N \subseteq A\). A move consists of one player, taking an uncoloured member of \(A\) and giving it his colour. A player wins if one of the sets \(A_i\) is completely coloured with his colour.

A pairing strategy is a collection of distinct elements \(X = \{x_1, x_2, \ldots, x_{2N-1}, x_{2N}\}\) such that \(x_{2i-1}, x_{2i} \in A_i\) for \(i \geq 1\). This is called a draw forcing pairing. Player 2 responds to Player 1's choice of \(x_{2i+\delta}, \delta = 0, 1\) by choosing \(x_{2i+3-\delta}\). If Player 1 does not choose from \(X\), then Player 2 can choose any uncoloured element of \(X\). In this way, Player 2 avoids defeat, because at the end of the game Player 2 will have coloured at least one of each of the pairs \(x_{2i-1}, x_{2i}\) and so Player 1 cannot have completely coloured \(A_i\) for \(i = 1, 2, \ldots, N\).

Theorem 7. If

\[
\left| \bigcup_{A \in \mathcal{G}} A \right| \geq 2|\mathcal{G}| \quad \forall \mathcal{G} \subseteq \mathcal{F}
\]

then there is a draw forcing pairing.

Proof We define a bipartite graph \(\Gamma\). \(A\) will be one side of the bipartition and \(B = \{b_1, b_2, \ldots, b_{2N}\}\). Here \(b_{2i-1}\) and \(b_{2i}\) both represent \(A_i\) in the sense that if \(a \in A_i\) then there is an edge \((a, b_{2i-1})\) and an edge \((a, b_{2i})\). A draw forcing pairing corresponds to a complete matching of \(B\) into \(A\) and the condition (10) implies that Hall's condition is satisfied.

Corollary 8. If \(|A_i| \geq n\) for \(i = 1, 2, \ldots, n\) and every \(x \in A\) is contained in at most \(n/2\) sets of \(\mathcal{F}\) then there is a draw forcing pairing.

Proof The degree of \(a \in A\) is at most \(2(n/2)\) in \(\Gamma\) and the degree of each \(b \in B\) is at least \(n\). This implies (via Hall's condition) that there is a complete matching of \(B\) into \(A\).

Consider Tic tac Toe when case \(d = 2\). If \(n\) is even then every array element is in at most 3 lines (one row, one column and at most one diagonal) and if \(n\) is odd then every array element is in at most 4 lines (one row, one column and at most two diagonals). Thus there is a draw forcing pairing if \(n \geq 6\), \(n\) even and if \(n \geq 9\), \(n\) odd. (The cases \(n = 4, 7\) have been settled as draws. \(n = 7\) required the use of a computer to examine all possible strategies.

In general we have

Lemma 7. If \(n \geq 3^d - 1\) and \(n\) is odd or if \(n \geq 2^d - 1\) and \(n\) is even, then there is a draw forcing pairing of \((n, d)\) Tic tac Toe.

10
Proof We only have to estimate the number of lines through a fixed point \(c = (c_1, c_2, \ldots, c_d) \). If \(n \) is odd then to choose a line \(L \) through \(c \) we specify, for each index \(i \), whether \(L \) is (i) constant on \(i \), (ii) increasing on \(i \) or (iii) decreasing on \(i \). This gives \(3^d \) choices. Subtract 1 to avoid the all constant case and divide by 2 because each line gets counted twice this way.

When \(n \) is even, we observe that once we have chosen in which positions \(L \) is constant, \(L \) is determined. Suppose \(c_1 = x \) and 1 is not a fixed position. Then every other non-fixed position is \(x \) or \(n - x + 1 \). Assuming w.l.o.g. that \(x \leq n/2 \) we see that \(x < n - x = 1 \) and the positions with \(x \) increase together at the same time as the positions with \(n - x + 1 \) decrease together. Thus the number of lines through \(c \) in this case is bounded by \(\sum_{i=0}^{d-1} \binom{d}{i} = 2^d - 1 \). \(\square \)

3.2 Quasi-probabilistic method

We now prove a theorem of Erdős and Selfridge.

Theorem 9. If \(|A_i| \geq n \) for \(i \in [N] \) and \(N < 2^n - 1 \), then Player 2 can get a draw in the game defined by \(\mathcal{F} \).

Proof At any point in the game, let \(C_j \) denote the set of elements in \(A \) which have been coloured with Player \(j \)'s colour, \(j = 1, 2 \) and \(U = A \setminus C_1 \cup C_2 \). Let

\[
\Phi = \sum_{i : A_i \cap C_2 = \emptyset} 2^{-|A_i \cap U|},
\]

Suppose that the players choices are \(x_1, y_1, x_2, y_2, \ldots \). Then we observe that immediately after Player 1's first move, \(\Phi < N2^{-(n-1)} < 1 \).

We will show that Player 2 can keep \(\Phi < 1 \) through out. Then at the end, when \(U = \emptyset \), \(\Phi = \sum_{i : A_i \cap C_2 = \emptyset} 1 \) implies that \(A_i \cap C_2 \neq \emptyset \) for all \(i \in [N] \).

So, now let \(\Phi_j \) be the value of \(\Phi \) after the choice of \(x_1, y_1, \ldots, x_j \). Then if \(U, C_1, C_2 \) are defined at precisely this time,

\[
\Phi_{j+1} - \Phi_j = - \sum_{i : A_i \cap C_2 = \emptyset} 2^{-|A_i \cap U|} + \sum_{i : A_i \cap C_2 = \emptyset} 2^{-|A_i \cap U|}
\]

\[
\leq - \sum_{i : A_i \cap C_2 = \emptyset} 2^{-|A_i \cap U|} + \sum_{i : A_i \cap C_2 = \emptyset} 2^{-|A_i \cap U|}
\]

We deduce that \(\Phi_{j+1} - \Phi_j \leq 0 \) if Player 2 chooses \(y_j \) to maximise over \(y \), \(\sum_{i : A_i \cap C_2 = \emptyset} 2^{-|A_i \cap U|} \).

In this way, Player 2 keeps \(\Phi < 1 \) and obtains a draw. \(\square \)

In the case of \((n, d)\) Tic Tac Toe, we see that Player 2 can force a draw if (see Lemma 5)

\[
\frac{(n+2)^d - n^d}{2} < 2^{n-1}
\]

which is implied, for \(n \) large, by

\[
n \geq (1 + \epsilon) d \log d
\]

where \(\epsilon > 0 \) is a small positive constant.
Shannon Switching Game Start with a connected multi-graph $G = (V, E)$.
Two players: Player A goes first and deletes edges and player B fortifies edges making them invulnerable to deletion by B. Player B wins iff the fortified edges contain a spanning tree of G.

Theorem 10. Player B wins iff G contains two edge disjoint spanning trees.

Proof (a) Here we assume that G has two edge disjoint spanning trees T_1, T_2. We prove this by induction on $|V|$. If $|V| = 2$ then G must contain at least two parallel edges joining the two vertices and so B can win. Suppose next that $|V| > 2$. Suppose that A deletes an edge $e = (x, y)$ of T_2 red. This breaks T_2 into two sub-trees T'_2, T''_2. B will choose an edge $f = (u, v) \in T_1$ with one end in $V(T'_2)$ and the other end in $V(T''_2)$. Now contract the edge f. In the new graph G', both T_1 and T_2 become spanning trees T'_1 and T'_2 and they are edge disjoint. It follows by induction that B can win the game on G' and then wins the game on G by uncontracting the edge f. Of course f is chosen first of all still!

If A chooses an edge x in neither of the trees then B can choose an arbitrary edge f of T_1. Now let e be any edge of the unique cycle contained in $T_2 + e$. B can continue playing on $G - x$ as though e was the deleted edge. We can contract f as before and apply the above inductive argument.

(b) For this part we use a Theorem due to Nash-Williams:

Theorem 11. Let k be a positive integer. Then G contains k edge disjoint spanning trees iff for every partition $P = (V_1, V_2, \ldots, V_t)$ of V we have

$$e(P) = |E(P)| = \sum_{1 \leq i < j \leq t} e(V_i, V_j) \geq k(\ell - 1).$$

Here $E(P)$ is the set of edges joining different parts of the partition and $e(V_i, V_j)$ is the number of edges joining V_i and V_j.

Let us apply Theorem 11 with $k = 2$. If G does not contain two edge disjoint spanning trees, then it contains a partition $P = (V_1, V_2, \ldots, V_t)$ with $e(P) \leq 2\ell - 3$. Player A starts by deleting an edge $e \in E(P)$. B will fortify an edge $f = (u, v)$. If u, v join different sets in the partition P we can merge them and consider P' which has one less part and satisfies $e(P') \leq e(P) - 2$ (edges e, f have gone from the count). Otherwise B chooses an edge entirely inside a part of P and the number of parts does not change, but $e(P)$ goes down by one. Eventually, we come to a point where one part is joined to the rest of the graph by a single edge ($2\ell - 3 = 1$ when $\ell = 2$) and A wins by deleting this edge.

Sketch of proof of Theorem 11

If $P = (V_1, V_2, \ldots, V_t)$ is a partition and T is a spanning tree then T contains at least $\ell - 1$ edges of $E(P)$ and the only if part is straightforward.

Suppose now that (11) holds for all partitions. Let F be the set of edge disjoint forests containing the maximum number of edges. If $F = (F_1, F_2, \ldots, F_k) \in F$ and $e \in E \setminus E[F]$ then every $F_i + e$ contains a cycle. If e' belongs to this cycle then $F_i' \in F$ where $F_i' = F_j$ for $j \neq i$ and $F_i' = F_i + e'$. We say that F_i' is obtained from F_i by a replacement.

Consider now a fixed $F_0 = (F_1^0, F_2^0, \ldots, F_k^0) \in F$ and let F^0 be the set of k-tuples in F that can be obtained from F^0 by a sequence of replacements. Then let

$$E^0 = \bigcup_{F \in F^0} (E \setminus E([F])).$$

Claim 1. For every $e^0 \in E \setminus E([F^0])$ there exists a set $U \subseteq V$ that contains the endpoints of e^0 and induces a connected tree in F_i^0 for $1 \leq i \leq k$.

12
Assume the claim for the moment. Suppose that not every F_i^0 is a spanning tree. Then G contains at least $k(|V| - 1)$ edges (from (11) applied to the partition of V into singletons) and so there exists $e^0 \in E \setminus E[F^0]$. Shrink the vertices of the set U in the claim to a single vertex v_U to obtain a graph G'. Apply induction to G' to get a set of k disjoint spanning trees T_1', T_2', \ldots, T_k' of G'. Now expand v_U back to U. Each T_i' expands to a spanning tree of G. In this way we get k edge-disjoint spanning trees of G.

Proof of Claim 1

Let $G^0 = (V, E^0)$ and let C_0 be the component of G^0 that contains e^0. Let $U = V(C^0)$. First verify that if $F = (F_1, F_2, \ldots, F_k) \in \mathcal{F}_0$ and F' is obtained from F by a replacement and x, y are the ends of a path in $F_i' \cap U$ then x, y are joined by a path $xF_i'y \subseteq U$. (Exercise).

We now show that $F_i^0 \cap U$ is connected. Let (x, y) be an edge of C^0. Since C^0 is connected, we only have to show that F_i^0 contains a path from x to y, all of whose vertices belong to U. But this follows by using the exercise and backwards induction starting from some $F \in \mathcal{F}_0$ for which F_i contains the edge (x, y).

\(\square\)